
Using Adaptive Server
Distributed Transaction Management Features

Adaptive Server Enterprise
Version 12

Document ID: 31650-01-1200-02

Last revised: October 1999

Copyright © 1989-1999 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase database management software and to any subsequent release until otherwise indicated in new
editions or technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager,
AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, Backup Server,
ClearConnect, Client-Library, Client Services, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress,
DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution
Director, E-Anywhere, E-Whatever, Embedded SQL, EMS, Enterprise Application Server, Enterprise Application Studio, Enterprise
Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work
Architecture, Enterprise Work Designer, Enterprise Work Modeler, EWA, Gateway Manager, ImpactNow, InfoMaker, Information
Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase,
MainframeConnect, Maintenance Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MySupport,
Net-Gateway, Net-Library, NetImpact, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit,
Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open
ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, Power++, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript,
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare
Desktop, PowerWare Enterprise, ProcessAnalyst, Report Workbench, Report-Execute, Replication Agent, Replication Driver,
Replication Server, Replication Server Manager, Replication Toolkit, Resource Manager, RW-DisplayLib, RW-Library, S Designor, S-
Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL
Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL
Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL
Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial
Server, Sybase Gateways, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream,
Transact-SQL, Translation Toolkit, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual
Components, VisualSpeller, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 9/99

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608.

Contents

iii

About This Book .. v

CHAPTER 1 Overview .. 1
Distributed Transaction Management Features 2
Affected Transaction Types ... 3

Distributed Transactions Coordinated by External Transaction
Managers.. 3

RPC and CIS Transactions ... 4
SYB2PC Transactions... 5

CHAPTER 2 Enabling DTM Features .. 7
Installing a License Key ... 8
Enabling DTM Features ... 9

enable dtm Parameter... 9
enable xact coordination Parameter.. 9

Configuring Transaction Resources... 10
Calculating Required Transaction Descriptors 10
Setting the Number of Transaction Descriptors 12

CHAPTER 3 Using Adaptive Server Transaction Coordination Services 13
Overview of Transaction Coordination Services 14

Hierarchical Transaction Coordination 14
X/Open XA-Compliant Behavior in DTP Environments........... 15

Requirements and Behavior... 16
Configuring Participant Server Resources 18

number of dtx participants Parameter 18
Optimizing number of dtx participants for Your System 19

Using Transaction Coordination Services
 in Heterogeneous Environments 20

strict dtm enforcement Parameter ... 20
Monitoring Coordinated Transactions and Participants.................. 21

Contents

iv

CHAPTER 4 DTM Administration and Troubleshooting.................................. 23
Transactions and Threads of Control ... 24

Implications for System Administrators 24
Lock Manager Changes to Support Detached Transactions... 25

Getting Information about Distributed Transactions....................... 26
Transaction Identification in systransactions........................... 26
Viewing Active Transactions with sp_transactions.................. 27
Determining the Commit Node and gtrid with sp_transactions 29

Crash Recovery Procedures for Distributed Transactions 32
Transactions Coordinated with MSDTC.................................. 32
Transactions Coordinated by Adaptive Server or X/Open XA. 32
Transactions Coordinated with SYB2PC................................. 33

Heuristically Completing Transactions ... 34
Completing Prepared Transactions... 34
Completing Transactions That Are Not Prepared 36
Determining the Commit Status for Adaptive Server Transactions

36

v

About This Book

Audience This manual is intended for administrators or application developers who
have purchased the Adaptive Server Distributed Transaction Management
(DTM) feature.

How to use this book Read this manual after you have installed Adaptive Server and its
associated feature licenses.

Related documents If you are using the DTM feature in an X/Open XA environment, also read
the XA Interface Integration Guide for CICS, Encina, and TUXEDO.

Other sources of
information

Use the Sybase Technical Library CD and the Technical Library Web site
to learn more about your product:

• Technical Library CD contains product manuals and technical
documents and is included with your software. The DynaText
browser (included on the Technical Library CD) allows you to access
technical information about your product in an easy-to-use format.

Refer to the Technical Library Installation Guide in your
documentation package for instructions on installing and starting
Technical Library.

• Technical Library Web site includes the Product Manuals site, which
is an HTML version of the Technical Library CD that you can access
using a standard Web browser. In addition, you’ll find links to the
Technical Documents Web site (formerly known as Tech Info
Library), the Solved Cases page, and Sybase/Powersoft newsgroups.

To access the Technical Library Web site, go to the Sybase Support
Services site at support.sybase.com, click the Electronic Support
Services tab, and select a link under the Technical Library heading.

Sybase certifications on
the web

Technical documentation at the Sybase Web site is updated frequently.

❖ For the latest information on product certifications and/or the EBF
Rollups:

1 Point your Web browser to Technical Documents at
http://www.techinfo.sybase.com.

2 In the Browse section, click on the What’s Hot entry.

vi

3 Explore your area of interest: Hot Docs covering various topics, or Hot
Links to Technical News, Certification Reports, Partner Certifications,
and so on.

❖ If you are a registered SupportPlus user:

1 Point your Web browser to Technical Documents at
http://www.techinfo.sybase.com.

2 In the Browse section, click on the What’s Hot entry.

3 Click on the EBF Rollups entry.

You can research EBFs using Technical Documents, and you can
download EBFs using Electronic Software Distribution (ESD).

4 Follow the instructions associated with the SupportPlusSM Online
Services entries.

❖ If you are not a registered SupportPlus user, and you want to become
one:

You can register by following the instructions on the Web.

To use SupportPlus, you need:

1 A Web browser that supports the Secure Sockets Layer (SSL), such as
Netscape Navigator 1.2 or later

2 An active support license

3 A named technical support contact

4 Your user ID and password

❖ Whether or not you are a registered SupportPlus user:

You may use Sybase’s Technical Documents. Certification Reports are among
the features documented at this site.

1 Point your Web browser to Technical Documents at
http://www.techinfo.sybase.com

2 In the Browse section, click on the What’s Hot entry.

3 Click on the topic that interests you.

Conventions The following style conventions are used in this manual:

• In a sample screen display, commands you should enter exactly as shown
are given in:

this font

 About This Book

vii

• In a sample screen display, words which you should replace with the
appropriate value for your installation are shown in:

this font

• In the regular text of this document, the names of files and directories
appear in italics:

/usr/u/sybase

• The names of programs, utilities, procedures, and commands appear in
bold type:

bcp

• Commands for both the C and Bourne shells are provided in this document
when they differ. The initialization file for the C shell is called .cshrc. The
initialization file for the Bourne shell is called .profile. If you are using a
different shell, such as the Korn shell, refer to your shell-specific
documentation for the correct command syntax.

The conventions for syntax statements in this manual are as follows:

Table 1: SQL syntax conventions

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

Key Definition

command Command names, command option names, utility names, utility
flags, and other keywords are in bold.

variable Variables, or words that stand for values that you fill in, are in italics.

{ } Curly braces indicate that you choose at least one of the enclosed
options. Do not include braces in your option.

[] Brackets mean choosing one or more of the enclosed options is
optional. Do not include brackets in your option.

() Parentheses are to be typed as part of the command.

| The vertical bar means you can select only one of the options shown.

, The comma means you can choose as many of the options shown as
you like, separating your choices with commas to be typed as part of
the command.

viii

1

C H A P T E R 1 Overview

Adaptive Server version 12 introduces several distributed transaction
management features to:

• Bring Adaptive Server into full compliance with the X/Open XA
protocol when acting as a resource manager, without requiring
additional services such as XA-Server

• Provide support for distributed transactions coordinated by Microsoft
Distributed Transaction Coordinator (MSDTC)

• Ensure consistent commit or rollback for transactions that update
Adaptive Server version 12 data via remote procedure calls (RPCs)
and Component Integration Services (CIS)

• Provide the framework to support additional distributed transaction
management protocols in the future

This chapter presents an overview of new distributed transaction
management features, and describes changes to Adaptive Server that
support those features.

Distributed Transaction Management Features

2

Distributed Transaction Management Features
Adaptive Server version 12 introduces these distributed transaction
management features:

• Improved transaction and thread management. Adaptive Server version 12
manages all transactions as server resources, and provides the ability to
attach and detach threads from transactions. These new capabilities
provide a common interface for supporting clients of local server
transactions, as well as clients in X/Open XA and MSDTC environments.
See “Configuring Transaction Resources” on page 10.

• New distributed transaction coordination services. Adaptive Server
provides consistent rollback and commit capabilities for transactions that
modify data in remote Adaptive Servers via RPCs and CIS. New
transaction coordination services guarantee the integrity of such
distributed transactions, even when no external transaction manager is
present. See Chapter 3, “Using Adaptive Server Transaction Coordination
Services”.

• Improved recovery for prepared transactions. During recovery, Adaptive
Server identifies prepared transactions that were coordinated by the
X/Open XA protocol and Adaptive Server native transaction coordination
services. Adaptive Server restores these transactions to the condition they
were in prior to recovery, and brings the associated database online more
quickly than in previous server versions. See “Crash Recovery Procedures
for Distributed Transactions” on page 32.

• New dbcc commands for heuristically completing distributed
transactions. See “Heuristically Completing Transactions” on page 34.

CHAPTER 1 Overview

3

Affected Transaction Types
The new Adaptive Server version 12 DTM features affect:

• Distributed transactions coordinated by external transaction managers

• Transactions that update data using RPCs and CIS

Distributed Transactions Coordinated by External Transaction
Managers

Distributed transactions can take place in an environment where an external
transaction manager coordinates transaction execution using a specific
protocol, such as X/Open XA. Adaptive Server supports transactions using the
CICS, Encina, TUXEDO, and MSDTC transaction managers through the
DTM XA interface to Adaptive Server.

Note Adaptive Server version 12 with the DTM XA interface provides
features that were previously part of the XA-Server product. The XA-Server
product is not required and is not included with Adaptive Server version 12.
See the XA Interface Integration Guide for CICS, Encina, and TOPEND for
information about the DTM XA interface.

New Behavior for Transaction Manager-Coordinated Transactions

Adaptive Server version 12 natively implements several features that were part
of the XA-Library and XA-Server products, and provides new recovery
procedures for prepared transactions coordinated via the X/Open XA protocol.
See “Configuring Transaction Resources” on page 10 and “Crash Recovery
Procedures for Distributed Transactions” on page 32 for more information.

The XA interface to Adaptive Server has been modified to accommodate the
server’s new distributed transaction management features. Changes to the XA
interface are transparent to X/Open XA client applications. However, you must
link the version 12 DTM XA interface with your X/Open XA transaction
manager in order to use Adaptive Server version 12 as a resource manager.
Details on all XA interface changes are described in the XA Interface
Integration Guide for CICS, Encina, and TOPEND.

Affected Transaction Types

4

Adaptive Server version 12 also introduces support for distributed transactions
coordinated by MSDTC. MSDTC clients can communicate directly with
Adaptive Server using the native interface. Clients can also communicate with
one or more Adaptive Server running on UNIX by using the DTM XA
Interface.

Note MSDTC clients using the DTM XA interface must possess dtm_tm_role
in the Adaptive Server(s) they access. See the XA Interface Integration Guide
for CICS, Encina, and TUXEDO for more information about dtm_tm_role.

RPC and CIS Transactions
Local Adaptive Server transactions can update data in remote servers by using
Transact-SQL remote procedure calls (RPCs) and Component Integration
Services (CIS). RPC updates are accomplished by executing an RPC from
within a locally-created transaction. For example:

sp_addserver westcoastsrv, ASEnterprise, hqsales
begin transaction rpc_tran1
update sales set commission=300 where salesid=”12OZ”
exec westcoastsrv.salesdb..recordsalesproc
commit rpc_tran1

The above transaction updates the sales table on the local Adaptive Server, but
also updates data on a remote server using the RPC, recordsalesproc.

CIS provides a way to update data on remote tables as if those tables were local.
By using sp_addobjectdef, users can create local objects in Adaptive Server
that reference remote data. Updating the local object modifies data in the
remote Adaptive Server. For example:

sp_addobjectdef salesrec,
“westcoastsrv.salesdb..sales”, “table”
begin transaction cis_tran1
update sales set commission=300 where salesid=”12OZ”
update salesrec set commission=300 where salesid=”12OZ”
commit cis_tran1

CHAPTER 1 Overview

5

New Behavior for RPC and CIS Transactions

Prior to Adaptive Server version 12, transactions that updated data via RPCs
and CIS could not roll back the work of the remote server, nor could those
transactions be assured that the remote work actually committed. Adaptive
Server provides new transaction coordination services to assure that RPCs and
CIS updates commit or roll back their work with the initiating transaction. See
Chapter 3, “Using Adaptive Server Transaction Coordination Services” for
more details.

If you have applications that rely on the earlier behavior of RPCs and CIS
updates, you can disable transaction coordination services. See “enable xact
coordination Parameter” on page 9 for information.

SYB2PC Transactions
SYB2PC transactions use the Sybase two-phase commit protocol to ensure that
the work of a distributed transaction is committed or rolled back as a logical
unit.

Adaptive Server version 12 does not modify the behavior of SYB2PC
transactions. However, application developers who implement SYB2PC
transactions may want to consider using Adaptive Server transaction
coordination services instead. Compared to SYB2PC transactions, transactions
coordinated directly by Adaptive Server use fewer network connections and
execute more quickly, while still ensuring the integrity of the distributed
transaction. Application code can also be simpler when Adaptive Server, rather
than the application, coordinates remote transactions. See Chapter 3, “Using
Adaptive Server Transaction Coordination Services” for more information.

Affected Transaction Types

6

7

C H A P T E R 2 Enabling DTM Features

This chapter describes how to enable Adaptive Server DTM Features. It
includes these sections:

• “Installing a License Key” on page 8

• “Enabling DTM Features” on page 9

• “Configuring Transaction Resources” on page 10

Installing a License Key

8

Installing a License Key
Distributed Transaction Management is available as a separately-licensed
Adaptive Server feature. Before you can enable and use DTM features, you
must purchase and install a valid license for both Adaptive Server and the DTM
feature.

See your Installation Guide for information about installing license keys and
using Sybase Software Asset Management (SySAM). Contact your Sybase
sales representative if you want to purchase a license for DTM or other licensed
Adaptive Server features.

CHAPTER 2 Enabling DTM Features

9

Enabling DTM Features
After you have purchased and installed a valid license for Adaptive Server and
the DTM feature, you can enable DTM features by using sp_configure with
the enable dtm and enable xact coordination configuration parameters.

enable dtm Parameter
The enable dtm parameter enables or disables basic DTM features. When
enable dtm is set to 1 (on), Adaptive Server supports external transactions
from MSDTC, and from X/Open XA transaction managers via the DTM XA
Interface. See the XA Interface Integration Guide for CICS, Encina, and
TUXEDO for more information.

To enable basic DTM Features, use the command:

sp_configure ’enable dtm’, 1

You must reboot Adaptive Server for this change to take effect.

enable xact coordination Parameter
enable xact coordination enables or disables Adaptive Server transaction
coordination services. When this parameter is enabled, Adaptive Server
ensures that updates to remote Adaptive Server data commit or roll back with
the original transaction. See Chapter 3, “Using Adaptive Server Transaction
Coordination Services” for more information.

To enable transaction coordination, use the command:

sp_configure ’enable xact coordination’, 1

You must reboot Adaptive Server for this change to take effect.

Configuring Transaction Resources

10

Configuring Transaction Resources
Adaptive Server version 12 provides a common interface to support both local
server transactions and external transactions coordinated by distributed
transaction protocols. Distributed transaction protocol support is provided for
X/Open XA, MSDTC, and native Adaptive Server transaction coordination
services.

Adaptive Server manages all transactions as configurable server resources, and
the System Administrator can configure the total number of resources available
in a given server. Client tasks that access Adaptive Server in an X/Open XA
environment can also suspend and join threads to transaction resources as
needed.

This section describes how to determine and configure the total number of
transaction resources available to Adaptive Server.

Calculating Required Transaction Descriptors
Adaptive Server version 12 uses the transaction descriptor resource to
manage transactions within a server. A transaction descriptor is an internal
memory structure that Adaptive Server uses to represent a transaction.

Upon booting up, Adaptive Server allocates a fixed number of transaction
descriptors based on the value of the configuration parameter, txn to pss ratio,
and places them in a pool. Adaptive Server obtains transaction descriptors from
the pool as they are needed for new transactions. As transactions complete,
descriptors are returned to the pool. If there are no transaction descriptors
available, transactions may be delayed as Adaptive Server waits for descriptors
to become freed.

To properly configure the number of transaction descriptors, it is important that
you understand exactly when Adaptive Server tries to obtain new descriptors
from the global pool. A new transaction descriptor is required when:

• A client connection initiates a new, outer-level transaction. This can occur
explicitly, when the client executes an outer-level begin transaction
command. It can also occur implicitly, when a client modifies data without
entering a begin transaction command.

Once an outer-level transaction has begun, future nested begin
transaction commands do not require additional transaction descriptors.
Allocation and deallocation of the transaction descriptor is dictated by the
outer-most block of the transaction.

CHAPTER 2 Enabling DTM Features

11

• An existing transaction modifies a second database (a multi-database
transaction). A multi-database transaction requires a dedicated transaction
descriptor for each database it accesses.

Figure 2-1 illustrates how Adaptive Server obtains and releases transaction
descriptors for different transaction types.

Figure 2-1: Allocating and deallocating transaction descriptors

In Figure 2-1, Adaptive Server uses a total of three transaction descriptors for
User 1, who accesses the server through a pair of client connections. The server
allocates a single descriptor for transaction “allwork,” which is freed when that
transaction commits. The nested transaction, “nested1,” does not require a
dedicated transaction descriptor.

Client Application
ISQL

C
o

n
n

ec
ti

o
n

 1

C
o

n
n

ec
ti

o
n

 2

User 1 User 2

begin tran allwork
update c1 set active=1
where c1name=”obem”
begin tran nested1
update c2 set comm=3
where txtname=”obem”
commit nested1
exec wcoast..recordwrk
commit allwork

begin tran addlead
insert leadtab values
(“obem”, 3)
use datastore2
insert incnames
values (“obem”,
“555-1010”)
commit addlead

update workdb
set bookid=2403
where title
like “Installing%”
go

Indicates a new transaction descriptor acquired

Indicates a transaction descriptor freed

C
o

n
n

ec
ti

o
n

 3

Configuring Transaction Resources

12

Transaction “addlead,” a multi-database transaction, requires two transaction
descriptors—one for the outer transaction block, and one for modifying a
second database, “datastore2.” Both transaction descriptors are released when
the outer transaction block commits.

User 2, accessing Adaptive Server from isql, also requires a dedicated
transaction descriptor. Even though User 2 did not explicitly create an outer
transaction block with begin transaction, Adaptive Server implicitly creates a
transaction block to execute the update command. The transaction descriptor
associated with this block is acquired after the go command, and released after
the insert has completed.

Because transaction descriptors consume memory that can be used by other
Adaptive Server services, it is important that you use only enough descriptors
to satisfy the maximum number of transactions that may be required at any
given time.

Setting the Number of Transaction Descriptors
Once you have determined the number of transaction descriptors to use in your
system, use sp_configure to set the value of txn to pss ratio. txn to pss ratio
determines the total number of transaction descriptors available to the server.
At boot time, this ratio is multiplied by the number of user connections
parameter to create the transaction descriptor pool:

of transaction descriptors = number of user
connections * txn to pss ratio

The default value, 16, ensures compatibility with earlier versions of Adaptive
Server. Prior to version 12, Adaptive Server allocated 16 transaction
descriptors for each user connection. In version 12, the number of simultaneous
transactions is limited only by the number of transaction descriptors available
in the server.

For example, to allocate 25 transaction descriptors for every user connection,
use the command:

sp_configure ’txn to pss ratio’, 25

You must reboot Adaptive Server for this change to take effect.

13

C H A P T E R 3 Using Adaptive Server
Transaction Coordination
Services

This chapter describes how to configure and use Adaptive Server
transaction coordination services. Topics include:

• “Overview of Transaction Coordination Services” on page 14

• “Requirements and Behavior” on page 16

• “Configuring Participant Server Resources” on page 18

• “Using Transaction Coordination Services in Heterogeneous
Environments” on page 20

• “Monitoring Coordinated Transactions and Participants” on page 21

Overview of Transaction Coordination Services

14

Overview of Transaction Coordination Services
The work of a local Adaptive Server transaction is sometimes distributed to
remote servers that modify remote data. This can happen when a local
transaction executes a remote procedure call (RPC) to update data in another
Adaptive Server table, or when a local transaction modifies data in a remote
table using Component Integration Services (CIS).

Prior to Adaptive Server version 12, local transactions that executed RPCs or
updated data via CIS could not roll back the work done in remote Adaptive
Servers. Moreover, the client executing the local transaction could not ensure
that the remote work was actually committed if, for example, the remote server
experienced a system failure.

Adaptive Server version 12 provides services to propagate transactions to
remote servers and coordinate the work of all servers, ensuring that all work is
either committed or rolled back as a logical unit. With these transaction
coordination services, Adaptive Server itself can act as a distributed transaction
manager for transactions that update data in multiple Adaptive Servers.

Hierarchical Transaction Coordination
Because other Adaptive Servers involved in a distributed transaction may also
coordinate remote participants, transactions can be further propagated to
additional servers in a hierarchical manner. For example, in Figure 3-1, the
client connected to ASE1 begins a transaction that executes an RPC on ASE2
and an RPC on ASE3. The coordination service for ASE1 propagates the
transaction to ASE2 and ASE3.

Since ASE2 also has transaction coordination services enabled, it can
propagate the transaction to additional remote participants. Here, ASE2
propagates the transaction to ASE4 where data is updated using CIS.

CHAPTER 3 Using Adaptive Server Transaction Coordination Services

15

Figure 3-1: Hierarchical transaction coordination

In Figure 3-1, ASE1 is referred to as the commit node for the distributed
transaction. When the transaction on ASE1 commits, the coordination service
for ASE1 instructs ASE2 and ASE3 to prepare the transactions that it
propagated to them. ASE3 indicates that its transaction is prepared when its
local work is ready to be committed. ASE2 must complete its local work and
instruct ASE4 to prepare its transaction. When the transactions are prepared in
ASE2 and ASE4, the coordination service in ASE1 commits the original
transaction. The instruction to commit subordinate transactions is then
transmitted to ASE2, ASE3, and ultimately to ASE4, in the same manner as the
instruction to prepare was transmitted.

X/Open XA-Compliant Behavior in DTP Environments
The X/Open XA protocol requires resource managers to provide coordination
services for transactions that are propagated to remote resource managers. This
requirement is made because the external transaction manager (and in some
cases, the client originating the transaction) has no knowledge of when
transactions are propagated to remote servers, and therefore cannot ensure that
the remote transactions complete or abort as required.

The new transaction coordination service brings Adaptive Server, in its role as
a resource manager, into full compliance with the X/Open XA protocol.
Distributed transactions can be implicitly propagated to remote servers through
RPCs and CIS, and Adaptive Server guarantees that the commit or rollback
status of the global transaction is preserved in the remote servers it coordinates.

Client

ASE3ASE2

ASTC

ASE4

ASE1

ASTC

begin tran
exec rpc2
exec rpc3
commit

rpc3

rpc2

update

Commit Node

Parent Node (ASE2)
and Participant (ASE3)

Participant

Requirements and Behavior

16

Requirements and Behavior
Adaptive Server transaction coordination services can ensure that the work of
remote servers is logically committed or rolled back provided that each remote
Adaptive Server is at version 12 or higher.

Transaction coordination services are transparent to the client executing the
distributed transaction. When a local client transaction executes a RPC or
updates data via CIS, the coordination service creates a new transaction name
for the remote work and propagates that transaction to the subordinate, remote
server. When the local client commits or rolls back the local transaction,
Adaptive Server coordinates that request with each of the subordinate servers
to ensure that the remote transactions are committed or rolled back as well.

The Adaptive Server transaction coordination service runs as one or more
background tasks named “ASTC HANDLER,” and can be viewed using
sp_who. In systems using multiple Adaptive Server engines, the number of
“ASTC HANDLER” processes (rounded down to the nearest whole number)
is:

number of engines * 2/3

There can be a maximum of 4 “ASTC HANDLER” processes running on
Adaptive Server.

The following output from sp_who shows a single “ASTC HANDLER”:

sp_who
fid spid status loginame
 origname hostname blk_spid
 dbname cmd block_xloid
----- ---------- ----------------- --------------
 ---------- ----------------- ---------------
 ---------- ----------------- ---------------
 0 1 running sa
 sa dtmsol1 0
 master SELECT 0
 0 2 sleeping NULL
 NULL 0
 master NETWORK HANDLER 0
 0 3 sleeping NULL
 NULL 0
 master DEADLOCK TUNE 0
 0 4 sleeping NULL
 NULL 0
 master MIRROR HANDLER0
 0 5 sleeping NULL

CHAPTER 3 Using Adaptive Server Transaction Coordination Services

17

 NULL 0
 masterHOUSEKEEPER 0
 0 6 sleeping NULL
 NULL 0
 master CHECKPOINT SLEEP 0
 0 7 sleeping NULL
 NULL metin1_dtm 0
 sybsystemdb ASTC HANDLER 0

Configuring Participant Server Resources

18

Configuring Participant Server Resources
By default, the transaction coordination service is always enabled. The System
Administrator can enable or disable these services using the enable xact
coordination configuration parameter. See the System Administration Guide
for a complete description of this parameter.

The System Administrator must also ensure that Adaptive Server has the
required resources to coordinate all of the RPCs and CIS updates that may be
requested by transactions. Each time a transaction issues an RPC or CIS
update, the transaction coordinator must obtain a free DTX participant. A
DTX participant or “distributed transaction participant” is an internal memory
structure that Adaptive Server uses to coordinate a transaction that has been
propagated to a subordinate Adaptive Server. In Figure 3-1 ASE1 requires
3 free DTX participants, and ASE2 requires 2 free DTX participants. (In each
case, a single DTX participant is used to coordinate the local work of the
transaction that is propagated.

DTX participant resources remain in use by the coordinating Adaptive
Server until the associated remote transaction has committed. This generally
occurs some period of time after the initiating transaction has committed, since
the initiating transaction commits as soon as all subordinate transactions have
successfully prepared their work.

If no DTX participants are available, RPC requests and CIS update requests
cannot proceed and the transaction is aborted.

number of dtx participants Parameter
The System Administrator can configure the total number of DTX participants
available in Adaptive Server using the number of dtx participants
configuration parameter. number of dtx participants sets the total number of
remote transactions that the Adaptive Server transaction coordination service
can propagate and coordinate at one time.

By default, Adaptive Server can coordinate 500 remote transactions.
Setting number of dtx participants to a smaller number reduces the number of
remote transactions that the server can manage. If no DTX participants are
available, new distributed transactions will be unable to start. In-progress
distributed transactions may abort if no DTX participants are available to
propagate a new remote transaction.

CHAPTER 3 Using Adaptive Server Transaction Coordination Services

19

Setting number of dtx participants to a larger number increases the number of
remote transaction branches that Adaptive Server can handle, but also
consumes more memory.

Optimizing number of dtx participants for Your System
During a peak period, use sp_monitorconfig to examine the use of DTX
participants:

sp_monitorconfig "number of dtx participants"
Usage information at date and time: Jun 18 1999 9:00AM.
Name # Free # Active % Active # Max Ever Used Re-used
 -------------- -------- ------ -------- --------------- -------
 number of dtx 480 20 4.00 210 NA
 participants

If the #Free value is zero or very low, new distributed transactions may be
unable to start due to a lack of DTX participants. Consider increasing the
number of dtx participants value.

If the #Max Ever Used value is too low, unused DTX participants may be
consuming memory that could be used by other server functions. Consider
reducing the value of number of dtx participants.

Using Transaction Coordination Services in Heterogeneous Environments

20

Using Transaction Coordination Services
 in Heterogeneous Environments

When Adaptive Server propagates transactions to other version 12 or higher
Adaptive Servers, it can ensure the integrity of the distributed transaction as a
whole. However, the work of a local Adaptive Server transaction is sometimes
distributed to remote servers that do not support version 12 transaction
coordination services. This may occur when a transaction uses RPCs to update
data in earlier Adaptive Server versions, or when CIS services are used to
update data in non-Sybase databases. Under these circumstances the
coordinating Adaptive Server cannot ensure that the work of remote servers is
committed or rolled back with the original transaction.

strict dtm enforcement Parameter
In Adaptive Server version 12, the System Administrator can enforce or relax
the requirement to have distributed transactions commit or roll back as a
logical unit by setting the strict dtm enforcement configuration parameter.

Note You can also override the value of strict dtm enforcement using the
session level set command with the strict_dtm_enforcement option.

strict dtm enforcement determines whether or not Adaptive Server
transaction coordination services will strictly enforce the ACID properties of
distributed transactions.

Setting strict dtm enforcement to 1 (on) ensures that transactions are
propagated only to servers that can participate in Adaptive Server-coordinated
transactions. If a transaction attempts to update data in a server that does not
support transaction coordination services, Adaptive Server aborts the
transaction.

In heterogeneous environments, you may want to make use of servers that do
not support transaction coordination. This includes older versions of Adaptive
Server and non-Sybase database stores configured using CIS. Under these
circumstances, you can set strict dtm enforcement to 0 (off). This allows
Adaptive Server to propagate transactions to legacy Adaptive Servers and
other data stores, but does not ensure that the remote work of these servers is
rolled back or committed with the original transaction.

CHAPTER 3 Using Adaptive Server Transaction Coordination Services

21

Monitoring Coordinated Transactions and Participants
Adaptive Server tracks information about the status of work done in
subordinate servers using data in the new system table,
sybsystemdb.dbo.syscoordinations. See the Adaptive Server Reference Manual
for a complete definition of this table.

The sp_transactions procedure also displays some data from the
syscoordinations table for in-progress, remote transactions. See “Getting
Information about Distributed Transactions” on page 26 for more information.

Monitoring Coordinated Transactions and Participants

22

23

C H A P T E R 4 DTM Administration and
Troubleshooting

This chapter provides information about how to monitor, administer, and
troubleshoot Adaptive Server DTM features. It includes the following
sections:

• “Transactions and Threads of Control” on page 24

• “Getting Information about Distributed Transactions” on page 26

• “Crash Recovery Procedures for Distributed Transactions” on page
32

• “Heuristically Completing Transactions” on page 34

• “Determining the Commit Status for Adaptive Server Transactions”
on page 36

Transactions and Threads of Control

24

Transactions and Threads of Control
Prior to Adaptive Server version 12, all of a transaction’s resources were
privately owned by a single server task. The server could not share a
transaction with any task other than the one that initiated the transaction.

Adaptive Server version 12 provides native support for the “suspend” and
“join” semantics used by X/Open XA-compliant transaction managers such as
Encina and TUXEDO. Transactions may be shared among different threads of
execution, or may have no associated thread at all.

When a transaction has no thread associated with it, it is said to be “detached.”
Detached transactions are assigned a spid value 0. You can see the transaction
spid value in the new master.dbo.systransactions table, or in output from the
new sp_transactions procedure. See “Getting Information about Distributed
Transactions” on page 26 for more information.

Implications for System Administrators
Detached transactions are meant to persist in Adaptive Server, since the client
application may want to reattach the original thread, or attach a new thread to
the transaction. The System Administrator can no longer roll back a transaction
by killing its associated spid, as a thread is not attached to the transaction.

Transactions in a detached state may also prevent the log from being truncated
with the dump transaction command. In extreme circumstances, detached
transactions can be rolled back by using the new dbcc complete_xact
command to heuristically complete a transaction. See “Heuristically
Completing Transactions” on page 34.

dtm detach timeout period Parameter

The system administrator can also specify a server-wide interval after which
Adaptive Server automatically rolls back transactions that are in the
detached state. dtm detach timeout period sets the amount of time, in minutes,
that a distributed transaction branch can remain in the detached state. After this
time has passed, Adaptive Server rolls back the detached transaction.

For example, to automatically rollback detached after 30 minutes, use the
command:

sp_configure ’dtm detach timeout period’, 30

CHAPTER 4 DTM Administration and Troubleshooting

25

Lock Manager Changes to Support Detached Transactions
Prior to Adaptive Server version 12, the lock manager could uniquely identify
a transaction’s locks by using the spid value of the transaction’s thread. With
the new transaction manager, transactions may be detached from their original
threads, and have no associated spid. Moreover, multiple threads with different
spid values must be able to share the same transaction locks to perform the
work of a distributed transaction.

To facilitate these changes, the Adaptive Server version 12 lock manager uses
a unique lock owner ID, rather than a spid, to identify transaction locks. The
lock owner ID is independent from the spid that created the transaction, and it
persists even when the transaction is detached from a thread. Lock owner IDs
provide a way to support transactional locks when transactions have no
associated threads, or when a new thread is attached to the transaction.

The lock owner ID is stored in the new loid column of master.dbo.syslocks.
You can determine the loid value of a transaction by examining sp_lock or
sp_transactions output.

Examining the spid and loid columns from sp_transactions output provides
information about a transaction and its thread of control. A spid value of zero
indicates that the transaction is detached from its thread of control. Non-zero
spid values indicate that the thread of control is currently attached to the
transaction.

If the loid value in sp_transactions output is even, then a local transaction
owns the lock. Odd loid values indicate that an external transaction owns the
lock.

See “Getting Information about Distributed Transactions” on page 26 for more
information about sp_transactions output.

Getting Information about Distributed Transactions

26

Getting Information about Distributed Transactions
Adaptive Server version 12 has a new system table,
master.dbo.systransactions, which stores information about all server
transactions. systransactions identifies each transaction and maintains
information about the state of the transaction and its associated threads.

The new system procedure, sp_transactions, translates information from the
systransactions and syscoordinations tables to display status conditions for
active transactions.

Transaction Identification in systransactions
Adaptive Server stores transaction names in a column of varchar(255) (as
compared to varchar(64) in previous server versions) to accommodate the
length and format of transaction names supplied by different distributed
transaction protocols. In the X/Open XA protocol, for instance, distributed
transactions are assigned a transaction name consisting of both a global
transaction ID (gtrid) and a branch qualifier. Within Adaptive Server, this
information is combined in the xactname column of the systransactions table.

systransactions.xactname stores the names of both externally-created
distributed transactions (defined by an X/Open XA transaction manager or
MSDTC) and local server transactions. Clients defining local transactions can
name those transactions anything they wish, within the confines of the
varchar(255) column. Similarly, external transaction managers can use a
variety of different formats to name a distributed transaction.

Transaction Keys

The transaction key, stored in the xactkey column of systransactions, acts as a
unique internal handle to a server transaction. For local transactions, xactkey
ensures that transactions can be distinguished from one another, even if the
transaction name is not unique to the server.

Beginning with Adaptive Server version 12, all system tables refer to
systransactions.xactkey to uniquely identify a transaction. The sysprocesses
and syslogshold tables are the only exceptions to this rule—they reference
systransactions.xactname and truncate the value to a length of varchar(64) (for
sysprocesses) and varchar(67) (for syslogshold), to maintain backward
compatibility with earlier Adaptive Server versions.

CHAPTER 4 DTM Administration and Troubleshooting

27

Viewing Active Transactions with sp_transactions
The sp_transactions procedure translates information from systransactions
and syscoordinations to provide information about active transactions. When
used without keywords, sp_transactions displays information about all active
transactions:

sp_transactions
xactkey type coordinator starttime
 state connection dbid spid loid
 failover srvname namelen
 xactname
 ------------------------------ ----------- -----------

 ----------------- ---------- ------ ------ -----------
 -------------------------- ------------------------------ -------

 0x00000b1700040000dd6821390001 Local None Jun 1 1999 3:47PM
 Begun Attached 1 1 2
 Resident Tx NULL 17
 $user_transaction
 0x00000b1700040000dd6821390001 Remote ASTC Jun 1 1999 3:47PM
 Begun NA 0 8 0
 Resident Tx caserv2 108

 00000b1700040000dd6821390001-aa01f04ebb9a-00000b1700040000dd6821390001-
aa01f04ebb9a-caserv1-caserv1-0002

Identifying Local, Remote, and External Transactions

The “type” column indicates whether the transaction is local, remote, or
external. Local transactions execute on the local server (the server on which
you ran sp_transactions). Local transactions have a null value in the
“srvname” column, since the transaction takes place on the current server.

For remote transactions, sp_transactions lists the name of the server
executing the transaction under the “srvname” column. The sp_transactions
output above shows a remote transaction executing on the server named
“caserv2.”

External transactions indicate that the transaction is coordinated by an external
transaction coordinator, such as CICS, Encina, or the “ASTC HANDLER”
process of another Adaptive Server. External transactions also have a null
value in the “srvname” column.

Getting Information about Distributed Transactions

28

Identifying the Transaction Coordinator

The “coordinator” column indicates the method or protocol used to manage a
transaction. In the output above, the local transaction “$user_transaction” does
not have an external coordinator. The remote transaction taking place on
“caserv2” has the coordinator value “ASTC.” This indicates that the
transaction is coordinated using native Adaptive Server coordination services,
as described under Chapter 3, “Using Adaptive Server Transaction
Coordination Services”.

See sp_transactions in the Adaptive Server Reference Manual for a
complete list and description of possible coordinator values.

Viewing the Transaction Thread of Control

The “spid” column displays the process ID of the process attached to the
transaction (or 0 if the transaction is detached from its thread of control). For
local transactions, the spid value indicates a process ID running on the local
server. For remote transactions, the spid indicates the process ID of a task
running on the indicated remote server. The output above shows a spid value
of 8 running on the remote server, “caserv2.”

Understanding Transaction State Information

The “state” column displays information about the current state of each
transaction. At any given time, a local or external transaction may be executing
a command, aborted, committed, and so forth. Additionally, distributed
transactions can be in a prepared state, or can be heuristically completed or
rolled back.

The “connection” column displays information about the state of the
transaction’s connection. You can use this information to determine whether a
transaction is currently attached to or detached from a process. Transactions in
X/Open XA environments may become detached from their initiating process,
in response to requests from the transaction manager.

See sp_transactions in the Adaptive Server Reference Manual for a complete
list and description of possible coordinator values.

Limiting sp_transactions Output to Specific States

You can use sp_transactions with the state keyword to limit output to the
specified transaction state. For example:

sp_transactions "state", "Prepared"

CHAPTER 4 DTM Administration and Troubleshooting

29

displays information only for distributed transactions that have been prepared.

Transaction Failover Information

The “failover” column displays special information for servers operating in
high availability environments. In high availability environments, prepared
transactions may be transferred to a secondary companion server if the original
server experiences a critical failure. The “failover” column can display three
possible failover states that indicate how and where the transaction is
executing:

• “Resident Tx” is displayed under normal operating conditions, and on
systems that do not utilize Adaptive Server high availability features.
“Resident Tx” means that the transaction was started and is executing on
a primary Adaptive Server.

• “Failed-over Tx” is displayed after there has been a failover to a secondary
companion server. “Failed-over Tx” means that a transaction originally
started on a primary server and reached the prepared state, but was
automatically migrated to the secondary companion server (for example,
as a result of a system failure on the primary server). The migration of a
prepared transaction occurs transparently to an external coordinating
service.

• “Tx by Failover-Conn” is also displayed after there has been a failover to
a secondary companion server. “Tx by Failover-Conn” indicates that the
application or client attempted to start the transaction on a primary server,
but the primary server was not available due to a connection failover.
When this occurs, the transaction is automatically started on the secondary
companion server, and the transaction is marked “Tx by Failover-Conn.”

See “Using Sybase Failover in a High Availability System” in this document
for more information about Adaptive Server failover features.

Determining the Commit Node and gtrid with sp_transactions
Using sp_transactions with the xid keyword displays the commit node,
parent node, and gtrid of a particular transaction, in addition to the output
described under “Viewing Active Transactions with sp_transactions” on page
27. This form of sp_transactions requires that you specify a particular
transaction name. For example:

sp_transactions "xid", "00000b1700040000dd6821390001-aa01f04ebb9a-
00000b1700040000dd6821390001-aa01f04ebb9a-caserv1-caserv1-0002"

Getting Information about Distributed Transactions

30

xactkey type coordinator starttime
 state connection dbid spid loid
 failover srvname namelen
 xactname
 commit_nodeparent_node
 gtrid
 ------------------------------ ----------- -----------

 ----------------- ---------- ------ ------ -----------
 -------------------------- ------------------------------ -------

 0x00000b2500080000dd6821960001 External ASTC Jun 1 1999 3:47PM
 Begun Attached 1 8 139
 Resident Tx NULL 108

 00000b1700040000dd6821390001-aa01f04ebb9a-00000b1700040000dd6821390001-
aa01f04ebb9a-caserv1-caserv1-0002

 caserv1 caserv1
 00000b1700040000dd6821390001-aa01f04ebb9a

Commit and Parent Nodes

For distributed transactions coordinated by Adaptive Server, the “commit
node” column lists the name of the server that executes the topmost branch of
the distributed transaction. This transaction determines the commit or rollback
status for all branches of the transaction. See “Hierarchical Transaction
Coordination” on page 14 for more information.

The “parent node” column lists the name of the server that initiated the
transaction. In the sp_transactions output above, the “commit node” and
“parent node” columns list the same server, “caserv1.” This indicates that the
distributed transaction originated on “caserv1”, and “caserv1” propagated a
branch of the transaction to the current server.

CHAPTER 4 DTM Administration and Troubleshooting

31

Global Transaction ID

The “gtrid” column displays the global transaction ID for distributed
transactions coordinated by Adaptive Server. Transaction branches that are
part of the same distributed transaction share the same gtrid. You can use a
specific gtrid with the sp_transactions gtrid keyword to determine the state
of other transaction branches running on the current server. This is useful for
System Administrators who must determine whether a particular branch of a
distributed transaction should be heuristically committed or rolled back. See
“Determining the Commit Status for Adaptive Server Transactions” on page 36
for an example that uses sp_transactions with the gtrid keyword.

Note For transactions coordinated by an X/Open XA-compliant transaction
manager, MSDTC, or SYB2PC, the gtrid column shows the full transaction
name supplied by the external coordinator.

Crash Recovery Procedures for Distributed Transactions

32

Crash Recovery Procedures for Distributed
Transactions

During crash recovery, Adaptive Server must resolve distributed transactions
that it discovers in the prepared state. The method used to resolve prepared
transactions depends on the coordination method or coordination protocol used
to manage the distributed transaction.

Note The following crash recovery procedures are not performed during
normal database recovery for load database or load transaction commands.
If load database or load transaction applies any transactions that prepared or
in-doubt, Adaptive Server aborts those transactions before bringing the
associated database online.

Transactions Coordinated with MSDTC
Prepared transactions that were coordinating using MSDTC are rolled forward
or backward depending on the commit status of the master transaction. During
recovery, Adaptive Server initiates contact with MSDTC to determine the
commit status of the master transaction, and commits or rolls back the prepared
transaction accordingly. If it cannot contact MSDTC, the recovery procedure
waits until contact is established. Further recovery does not take place until
Adaptive Server has established contact with MSDTC.

Transactions Coordinated by Adaptive Server or X/Open XA
During crash recovery, Adaptive Server may also encounter prepared
transactions that were coordinated using Adaptive Server transaction
coordination services or the X/Open XA protocol. Upon encountering these
transactions, the local server must wait for the coordinating Adaptive Server or
the external transaction coordinator to initiate contact and indicate whether the
prepared transaction should commit or roll back.

To speed the recovery process, Adaptive Server restores each of these
transactions to their condition prior to the failure. The transaction manager
creates a new transaction with the original transaction ID, and the lock manager
applies locks to protect data that the original transaction was modifying. The
restored transaction remains in a prepared state but is detached, having no
thread associated with it.

CHAPTER 4 DTM Administration and Troubleshooting

33

Once the transaction’s coordinator contacts Adaptive Server, the transaction
manager can commit or roll back the transaction.

Using this recovery mechanism, the server can bring a database online even
when the coordinating Adaptive Server or external transaction manager has not
yet attempted to resolve the prepared transaction. Other clients and transactions
can resume work on the local data, since the prepared transaction holds the
locks it did prior to recovery. The prepared transaction itself is ready to commit
or roll back once contacted by its coordinator.

When the controlling Adaptive Server or external transaction manager cannot
complete the transaction, the System Administrator can heuristically complete
the transaction to free its locks and transaction resources. See “Heuristically
Completing Transactions” on page 34 for more information.

Transactions Coordinated with SYB2PC
Prepared transactions that were coordinated using the SYB2PC protocol are
rolled forward or backward depending on the commit status of the master
transaction. During recovery, Adaptive Server initiates contact with the
commit service to determine the commit status of the master transaction, and
commits or rolls back the prepared transaction accordingly. If it cannot contact
the commit service, Adaptive Server does not bring the database online.
However, Adaptive Server does proceed to recover other databases in the
system.

This recovery method was used for SYB2PC transactions in earlier Adaptive
Server versions and is unchanged with Adaptive Server version 12.

Heuristically Completing Transactions

34

Heuristically Completing Transactions
Adaptive Server version 12 includes the new dbcc complete_xact command
to facilitate heuristic completion of transactions. dbcc complete_xact
resolves a transaction by either committing or rolling back its work, freeing
whatever resources the transaction was using.

dbcc complete_xact is provided for those cases where only the System
Administrator can properly resolve a prepared transaction, or for when the
System Administrator must resolve a transaction without waiting for the
transaction’s coordinator.

For example, in Figure 3-1 on page 15, heuristic completion may be
considered if all remote Adaptive Servers have prepared their transactions, but
the network connection to ASE1 was permanently lost. The remote Adaptive
Servers will maintain their transactions in a prepared state until contacted by
the coordination service from ASE1. In this case, only the System
Administrator for ASE2, ASE3, and ASE4 can properly resolve the prepared
transactions. Heuristically completing the prepared transaction in ASE3 frees
up transaction and lock resources, and records the commit status in
systransactions for later use by the transaction coordinator. Heuristically
completing the transaction in ASE2 also completes the transaction propagated
to ASE4.

Completing Prepared Transactions

 Warning! Heuristically completing a prepared transaction can cause
inconsistent results for an entire distributed transaction. The System
Administrator’s decision to heuristically commit or roll back a transaction may
contradict the decision made by the coordinating Adaptive Server or
transaction protocol.

Before heuristically completing a transaction, the System Administrator
should make every effort to determine whether the coordinating Adaptive
Server or transaction protocol decided to commit or roll back the distributed
transaction (see “Determining the Commit Status for Adaptive Server
Transactions” on page 36).

CHAPTER 4 DTM Administration and Troubleshooting

35

By using dbcc complete_xact, the System Administrator forces Adaptive
Server to commit or roll back a branch of a distributed transaction. After
heuristically completing a prepared transaction, Adaptive Server records the
transaction’s commit status in master.dbo.systransactions so that the
transaction’s coordinator—Adaptive Server, MSDTC, or an X/Open XA
transaction manager—can know whether the transaction was committed or
rolled back.

Adaptive Server propagates the command to heuristically commit or abort a
transaction to any participant servers that it coordinated for the transaction
branch. For example, if in Figure 3-1 on page 15 you heuristically commit the
transaction on ASE2, ASE2 propagates the command to ASE4 so that the
transaction on ASE4 also commits.

dbcc complete_xact requires that you supply an active transaction name and
desired outcome for the transaction. For example, the following command
heuristically commits a transaction:

dbcc complete_xact "00000b1700040000dd6821390001-
aa01f04ebb9a-00000b1700040000dd6821390001-
aa01f04ebb9a-caserv1-caserv1-0002", "commit"

Forgetting Heuristically Completed Transactions

When the System Administrator heuristically completes a prepared
transaction, Adaptive Server maintains information about the transaction’s
commit status in master.dbo.systransactions. This information is maintained so
external transaction coordinators can detect the presence of heuristically
completed transactions.

If the external coordinator is another Adaptive Server, the server examines the
commit status and logs a warning message if the heuristic completion conflicts
with the commit status of the distributed transaction. After examining the
commit status, the coordinating Adaptive Server clears the commit status
information from systransactions.

If the external coordinator is an X/Open XA-compliant transaction manager,
the transaction manager does not log warning message when the heuristic
completion conflicts with the distributed transaction. However, X/Open XA-
compliant transaction managers clear the commit status information from
systransactions.

Heuristically Completing Transactions

36

Manually Clearing the Commit Status

dbcc forget_xact purges the commit status of a heuristically completed
transaction from systransactions. It can be used when the System
Administrator does not want the coordinating service to have knowledge that a
transaction was heuristically completed, or when an external coordinator will
not be available to clear information from systransactions.

See dbcc in the Adaptive Server Reference Manual for more information
about using dbcc forget_xact.

Completing Transactions That Are Not Prepared
dbcc complete_xact can also be used to roll back Adaptive Server-
coordinated transactions that have not yet reached the prepared state.
Heuristically rolling back a transaction that has not yet been prepared does not
pose a risk to the distributed transaction, since the coordinating server can
recognize that the transaction failed to prepare its work. Under these
circumstances, the coordinating Adaptive Server can roll back the entire
distributed transaction to preserve consistency.

When you heuristically roll back an Adaptive Server transaction that has not
yet been prepared, Adaptive Server does not record the heuristic roll back in
systransactions. Instead, an informational message is printed to the screen and
recorded in the server’s error log.

Determining the Commit Status for Adaptive Server Transactions
If the distributed transaction branch you want to commit or roll back is
coordinated by Adaptive Server, you can use sp_transactions to determine
the commit status of the distributed transaction. To do so, complete the
following steps.

Note These steps cannot be used with distributed transactions that are
coordinated by the X/Open XA protocol, MSDTC, or SYB2PC.

1 In the server that is executing the transaction branch you want to complete,
use sp_transactions with the xid keyword to display information about
the transaction. Record the commit node and gtrid of the transaction. For
example:

CHAPTER 4 DTM Administration and Troubleshooting

37

sp_transactions "xid",
"00000b1700040000dd6821390001-aa01f04ebb9a-
00000b1700040000dd6821390001-aa01f04ebb9a-caserv1-
caserv1-0002"

xactkey type coordinator starttime
 state connection dbid spid loid
 failover srvname namelen
 xactname
 commit_nodeparent_node
 gtrid
 ------------------------------ ----------- -----------

 ----------------- ---------- ------ ------ -----------
 -------------------------- ------------------------------ -------

 0x00000b2500080000dd6821960001 External ASTC Jun 1 1999 3:47PM
 Begun Attached 1 8 139
 Resident Tx NULL 108

 00000b1700040000dd6821390001-aa01f04ebb9a-
00000b1700040000dd6821390001-aa01f04ebb9a-caserv1-caserv1-0002

 caserv1sfserv
 00000b1700040000dd6821390001-aa01f04ebb9a

In this example, the commit node for the distributed transaction is
“caserv1” and the gtrid is “00000b1700040000dd6821390001-
aa01f04ebb9a”.

2 Log on to the server indicated by the commit node. For example:

isql -Usa -Psa_password -Scaserv1

3 Use sp_transactions with the gtrid keyword to determine the commit
status of the distributed transaction having the gtrid obtained in step 1:

sp_transactions "gtrid",
"00000b1700040000dd6821390001-aa01f04ebb9a"

 xactkey type coordinator starttime
 state connection dbid spid loid
 failover srvname namelen
 xactname
 commit_node
 parent_node
 ------------------------------ ----------- -----------

Heuristically Completing Transactions

38

 ----------------- ---------- ------ ------ -----------
 -------------------------- ------------------------------ -------

 0x00000b1700040000dd6821390001 Local None Jun 1 1999 3:47PM
 Committed Attached 1 1 2
 Resident Tx NULL 17
 $user_transaction

 caserv1
 caserv1

In this example, the local transaction with the specified gtrid has
committed, as indicated by the “state” column. The System Administrator
should heuristically commit the prepared transaction examined in step 1.

4 Using an account with System Administrator privileges, log on to the
server that is executing the transaction branch you want to complete:

isql -Usa -Psa_password -Ssfserv

5 Use dbcc complete_xact to commit the transaction. In this example, the
System Administrator should use the commit keyword to maintain
consistency with the distributed transaction:

dbcc complete_xact "00000b1700040000dd6821390001-
aa01f04ebb9a-00000b1700040000dd6821390001-
aa01f04ebb9a-caserv1-caserv1-0002", "commit"

Index

39

A
Asset management 8
ASTC Handler 16

B
begin transaction command 10
Bourne shell vii

C
C shell vii
CICS 3, 27
CIS 4, 5, 14, 15
Commit node 15, 29, 30
complete_xact command 24, 34, 35
Component Integration Services

See CIS
Coordination services 3, 13–21

enabling 9
heterogeneous environments and 20
hierarchical 14
overview of 2
requirements of 16

.cshrc file vii

D
dbcc command 2, 24, 34, 35, 36
Detached transactions 24, 25
Distributed Transaction Management 1
DTM

administration of 23–38
coordination services 2
enabling 9
licensing of 8

overview of 1–5
thread management with 2
transaction descriptors 10
troubleshooting of 23–38

dtm detach timeout period parameter 24
dtm_tm_role 4
DTX participant 18

configuring 18
monitoring 21
optimizing 19

dump transaction command 24

E
enable dtm parameter 9
enable xact coordination parameter 9, 18
Encina 3
External transactions 27

F
Failed-over Tx status 29
Failover information 29
Files

.cshrc vii

.profile vii
forget_xact command 36

G
Global transaction ID (gtrid) 29, 31

H
Heterogeneous environments 20

Index

40

Heuristic completion 2, 24, 34–38
forgetting 35

I
isql utility 12

K
Korn shell vii

L
License key 8
load database command 32
load transaction command 32
Local transactions 27
Lock manager 25

M
Microsoft Distributed Transaction Coordinator

See MSDTC
Monitoring transactions 21
MSDTC 1, 2, 3, 10, 26, 32

dtm_tm_role and 4
ODBC driver and 4
XA Interface and 4

Multi-database transactions 11

N
number of dtx participants parameter 18

optimizing 19
number of engines parameter 16
number of user connections parameter 12

O
ODBC driver 4

P
Parent node 30
Participants

See DTX Participant
Prepared transactions 36
.profile file vii

R
Recovering transactions 2
Remote procedure call

See RPCs
Remote transactions 27
Resident Tx status 29
RPCs 4, 5, 14, 15

S
See DTM
Shells vii
sp_addobjectdef procedure 4
sp_configure procedure 9, 12
sp_transactions procedure 21, 24, 25, 26–31
sp_who procedure 16
srvname column 27
State information 28
strict dtm enforcement parameter 20
SYB2PC transactions 5, 33
sybsystemdb database 21
Syntax conventions vii
SySAM 8
syscoordinations table 21
syslogshold table 26
sysprocesses table 26
systransactions table 26, 35

T
Thread of control 28
Transaction descriptors 10, 12
Transactions

Adaptive Server coordination of 3, 13–21, 28
CIS data and 4

Index

41

detaching thread from 24
determining commit status of 36
external 26, 27
failover status of 29
gtrid of 29, 31
heuristic completion of 2
hierarchical coordination of 14
keys of 26
local 27
monitoring 21
MSDTC coordination of 32
multi-database 11
prepared 36
recovery of 2, 32
remote 27
resources for 10, 12, 18
state information of 28
SYB2PC coordination of 5, 33
threads 28
TM coordination of 3
types of 3
X/Open XA coordination of 32

TUXEDO 3
Two-phase commit protocol 5
Tx by Failover-Conn status 29
txn to pss ratio parameter 10, 12

U
update command 12

X
X/Open XA 3, 10, 15, 26, 32
XA Interface 3
xactname column 26
XA-Server 1, 3
xid keyword 29

Index

42

